
A Supplementary Guide to Computational Thinking

Ariel Feldman

07/23/18

1 Introduction

Welcome to Introduction to Computational Thinking! The goal of this course is to familiarize you with compu-
tational methods for problem solving, and though it may be daunting at first to those with little computational
background, there is no reason you can’t succeed.

As you continue through this course, it is important to remember that you are not learning how to code, but rather
how to look at mathematical problems in a new light. There are numerous problems more easily solved with
a computational approach that shall be highlighted through the semester. Hopefully, this course adds another
weapon in your arsenal when presented with an algorithmic challenge.

This guide shall aim to provide you with resources, practice problems, and additional explanations of topics taught
in class. In no way does this replace class — Dr. Rixner provides great explanations and very useful feedback,
which I strongly encourage you to take advantage of. However, I’d had very little experience with computers prior
to taking the course and thus encountered a steep learning curve. Thus, I hope this guide eases your transition, and
I welcome you to reach out to me or any of the other TA’s (whose contact info you may find on the canvas site)
with any questions you may have. My email is akf1 [at] rice [dot] edu.

2 Python as a Tool

Before we begin introducing you to mathematical concepts, let’s go over some basic Python. The reason we begin
with Python over another language is because the syntax is somewhat easier to understand without a programmatic
background than other languages, allowing us to focus more on learning the algorithmic techniques /textitbehind
our problem solving solutions than on learning the language itself.

A few general links that are also provided for you on Canvas are listed below. You definitely don’t need to study
these, but scrolling through may help you familiarize yourself with the language:

1. Python 2.7 Documentation

2. Beginning Python

3. Learning Python

4. The Official Python Tutorial

5. A Beginner’s Python Tutorial

And now, we’ll go through some basic functions in practice. In future unit, I’ll explain a bit more about the specific
Python requirements you may need to know. But for now, let’s stick to more general syntax and structures you’ll
need to know.

Let’s start with defining a function. The following code can be used to define a function called colleges (by
convention, we tend to name functions beginning with lowercase letters; camelcase may be used for variable
names consisting of multiple words) that will return different results based on the college name:

1

https://docs.python.org/2.7/
http://hetland.org/writing/beginning-python-2/
http://shop.oreilly.com/product/0636920028154.do
https://docs.python.org/3/tutorial/
http://sthurlow.com/python/

def collegeComments(college):
"""
Function to take a college name and print a comment regarding that school.
"""
Checking if the colleges are relevant, and printing a comment about them
if they are.

if college == "Rice":
print "unconventional"

elif college == "Berkeley":
print "memes"

else:
print "irrelevant"

There’s a lot to unpack here for a beginner. Above is an example of documented code: the docstring explains
the overall goal of the function, while the comments describe steps (since we have a very simple function, there
is only one comment — more are needed for more complex functions!). The def is used to define a function,
meaning the word after it is the function name you will call later, and the name(s) in parentheses is(/are) the input
to the function.

The if statements, or conditionals, check if the input college meet the requirements set, and print a comment if
so. Python is a serial language, meaning it runs the lines you write in order. Therefore, college name will first
be compared (demarcated by the ==) to the string “Rice”, then to the string “Berkeley”. If neither condition
is satisfied, the else statement will be entered. Since we are using Python 2.x, print statements do not need
parentheses, but be aware that they are needed for Python 3.x versions.

It will be useful to understand basic data structures in Python. Let’s break down some built-in structures into two
categories: ordered vs. non-ordered.

2.1 Ordered Data Structures in Python

Lists, tuples and strings are three ordered sequences you will need to be familiar with for this course. Tuples and
strings are known as “immutable types”, basically meaning that the data contained within them cannot be changed.
You can print altered versions of the data, and you can create other objects containing the same data — we will
cover objects and references later — but you may not alter the original object containing said data. Lists, on the
other hand, are very easily mutable. Lists and tuples can contain any sort of data (integers, floating point numbers,
etc.), while strings contain only characters.

Lists are formed with brackets:

sampleList = [1, 2, 3]

Tuples are formed with parentheses or comas:

sampleTuple =(1, 2, 3)

or
sampleTuple =1, 2, 3

Strings are formed with quotation marks:

sampleString =“character”

or
sampleString =‘character′

or
sampleString =str(character)

2

http://thomas-cokelaer.info/tutorials/python/lists.html
http://thomas-cokelaer.info/tutorials/python/tuples.html
http://thomas-cokelaer.info/tutorials/python/strings.html

You may index any of these data structures using brackets like so:

sampleList[0] = 1

sampleTuple[1] = 2

sampleString[2] = “a”

2.2 Unordered Data Structures in Python

Dictionaries and sets are two unordered data structures you will need to be familiar with in this course. Since
they are unordered, you cannot index them as you can with ordered sequences. However, they do have some
advantages:

Sets cannot contain duplicates. Thus, adding an item already contained within a set to said set does not do
anything to it. Click the hyperlink above for explanations of set operations such as intersection, difference
and symmetric difference.

Dictionaries — refer to these as mappings in your recipes, as dictionary is not a mathematical term — do
just that: map a key to a value. Thus, you can index a dictionary by a key to retrieve the related value(s).
Imagine we had a dictionary called college of colleges in our function on page 2 mapped to the comments
they print out. Calling college[“Rice”] would return “unconventional”, but calling college[1] would be an
error.

To create a set:

sampleSet = set([1, 2, 3])

To create a dictionary:

sampleDict = {“Rice′′ : “unconventional′′, “Berkeley′′ : “memes′′}

Let’s say you try to make a set with duplicates. What happens then?

dupSet = set([1, 1, 2, 3])

print dupSet
dupSet = set([1, 2, 3])

Another feature of Python with which you should be familiar is loops: specifically, for loops and while loops.

2.3 For Loops

For loops are useful to repeat a set of functions or operations on multiple elements within a sequence. Let’s refer
back to our list l, defined above.

’’’
Adding all the elements in a list together
’’’

sum = 0
for element in l:
sum += element
return sum

Clearly, this will return 6 (adding 1, 2 and 3 together). However, as you will see through this course, for loops can
often times come in handy for more complex operations.

3

http://thomas-cokelaer.info/tutorials/python/dicts.html
http://thomas-cokelaer.info/tutorials/python/sets.html
https://www.pythonforbeginners.com/loops/for-while-and-nested-loops-in-python

2.4 While Loops

A while loop will continue performing specified operations until a condition is no longer met. Let’s once again
refer back to our list sampleList.

"""
print numbers until length of the list sampleList
"""
num = 0
while num < len(sampleList):
num +=1

print num

Clearly, this code will print 1, then 2, and finally 3. However, since the length of the list sampleList is 3, once num
is changed to 3 and we return to the top of the loop, num no longer meets the condition < len(sampleList), and
thus the loop is exited. While loops may also be performed with boolean conditionals (while True or while False).

However, be cautious when creating your while loops — it is important that you always have a break case. What
does this mean? Well, let’s take a quick look at another while loop.

"""
Keep printing numbers, multiplying by 2
"""

num = 1
while num > 0:
num *= 2

So, what happens in this loop? You can see that we first initialize num to a value of 1 (notice how I phrased that
— keep that in mind while writing your recipes), and then, while num has a value larger than zero, we continually
multiply num by 2. In the first while loop we looked at, we saw that num no longer satisfied the conditions for
the loop once it was equal in value to the length of the input sequence. Now reconsider the loop we defined just
above. When does num no longer satisfy the condition for the loop? Since num is initialized to a positive integer,
and we continually multiply it by a positive integer, num is never going to be negative. Thus, it will never break
out of the loop — a case we refer to as an infinite loop.

3 Some Advice On Recipes

Remember several things while writing your recipes:

1. Refer to everything in mathematical terms (i.e. list as sequence, dictionary as mapping). The emphasis in
this course is not on programmatic proficiency, but rather on mathematical understanding. Therefore, you
should explain your reasoning in those (mathematical) terms.

2. I cannot emphasize this enough: write your recipes before writing your code. This makes writing your
algorithm so much easier, and helps the debugging process. If you decide not to do this, you will find in
later courses (and perhaps in this one as well) that you are simply unable to do so.

3. Your recipe can be similar to code in terms of indentation, i.e.

for each element in sequence l, do:
add 2 to the element

This may help you keep your algorithm organized, and will make implementing it easier.

4

4 Approaching The Projects

Make sure you clearly read the assignment page prior to beginning the problem, including any additional materials
your professor may have added. It may seem like a lot, but I promise you it’ll save time in the end. Additionally,
don’t be afraid to come to office hours! It’s what we are here for, and many students do not take advantage of us
as a resource.

You can google mathematical concepts or ask a friend if you need extra help, but remember to abide by the honor
code, described on Canvas. Like I said before, please write the recipes before implementing in Python. It’ll be
much easier to get help from a TA if you can clearly explain and reason through your algorithm.

While on the topic of seeking help from TAs — please, please, please give your variables useful names! Though
you can technically name your variables, functions and classes anything you’d like (so long as it is not already
defined by Python, such as str), it makes both debugging on your own and explaining what you did to a TA so
much easier. As well, it is good practice to do so outside of your courses. Many people I work with spend so
much more time debugging because they forget what exactly certain steps of their algorithms were attempting to
do — which should also signify to you commenting and adding docstrings is applicationally relevant! — and I,
too, have found well named variables, functions and classes incredibly helpful whilst writing algorithms. Thus,
I’d encourage you to name a list more than just l or string, but rather something like colleges or courses, so long
as it is relevant to the problem at hand.

It is helpful to test your code on OwlTest as you’re debugging, as it will give examples of edge cases that may
not be accounted for by your algorithm. As always, it is very helpful to think through your algorithm and try to
identify edge cases to test before submitting, as not all possible edge cases are likely in OwlTest. OwlTest (or any
method to check your work prior to final submission) is a resource you may not have both in later courses and in
practice, so learning how to debug now will benefit you tremendously.

Since Module 1 is relatively well guided, and is just to get you familiarized with thinking in a computational
manner, let’s skip ahead to Module 2.

5 Module 2

We already discussed conditionals briefly above, but let’s dive a little deeper. Conditional statements are useful
when you want to perform specific operations on a subset of cases, i.e. when some specified requirements are
met. Let’s breakdown that algorithm we wrote on page 2, collegeComments, into English terms. Assume the user
passes in a college name we did not account for, such as Harvard, so that we shall encounter each of the three
conditional statements.

1. First, we will check if the college name passed in is Rice. Note that we use the ‘==’ here, indicating that we
are comparing the values of the objects, not the actual objects themselves (a topic for a later unit). Harvard
isn’t Rice, sadly for them, so we move onto the next statement.

2. Second, we’ll move into the first (and in this case, only) “else, if”” statement (written elif). Is Harvard the
same as Berkeley? Nope. Time to move onto the next statement.

3. Since there are no more “else, if” statements, we would exit the conditionals. But wait! Before we do, we
check if there is an else statement — in our case, there is! The else statement will provide default operations
for any cases that do not meet those specified in the “if” and “else, if” cases. Since Harvard did not satisfy
those cases, we perform the default operation and print “irrelevant”.

5.1 Modular Arithmetic

Perhaps a new mathematical concept to you is modular arithmetic. Not to worry! It’s actually quite a simple (and
useful tool) to think about. Modular (represented by %), simply determines a type of remainder. Let’s say, for
example, I have 18%10. When I divide 18 by 10, I have 8 numbers left over that 10 does not fit nicely into. Thus,
18%10 = 8. It may be useful to think of this like a clock, in which the hours of the day are evaluated using %12.

5

The hours of the day, then sort of wrap around this number — 17 hours into the day is referred to as 5 P.M., since
17%12 = 5. An applicational use of this can be observed in a modified version of DeepLabCut, a laboratory
solution for animal video tracking in which the objects to be tracked must be initially labeled in training images
(for a neural network) in the exact same order, as the labels are assigned values using modular arithmetic.

In Python, you can think of mod as an operator. However, mathematically speaking, mod is a sort of modifier to
the equality assertion, in the sense that 5 = 17 when the modulus is 12. It’s a small difference that probably does
not matter in this course, but personally I prefer to know proper definitions — you never know when the proper
definition may just make all the pieces of a problem click.

5.2 Projective Geometry

Projective geometry was, for me, arguably the hardest concept (besides perhaps recursion) to understand. So, let’s
spend a bit of time on this one. Imagine you’re looking at a painting, like the one below by Leonid Afremov called
City by the Lake.

You may be wondering how a scene this beautiful (isn’t it something?) may relate to projective geometry. But, if
you’re looking at the painting like a projective mathematician, you’ll probably be looking at the road by the lake, as
opposed to the city. Why’s that? Think about an ideal road — no, not the lack of potholes, but rather how perfectly
parallel the sides are. Imagine the road in the painting is one of the “ideal” ones. Would the sides still appear to
converge in the distance? Of course they would. It’s a basic rule of art: perspective. Could two parallel lines
converge in Euclidean space (the 2-dimensional geometric plane, and 3-dimensional space, on which all geometry

6

https://github.com/arielfeldman/RNELDeepLabCut

you’ve likely learned prior is based)? No! In fact, that’s the definition of parallel. However, in projective space,
it’s very possible. In fact, you can just think of projective geometry as a mathematical backing to the concept of
perspective.

But how does projective geometry rationalize this? Consider the next image.

We know from Euclidean geometry’s fundamental theorem of similarity that DE of triangle ABC splits AC and
BC proportionally. Now let’s project triangle ABC (from plane RP) onto plane PP. Take a look at A′B′ and D′E′.
Still parallel? They don’t seem to be — in fact, they seem to converge at some point along the horizon, labeled Ω
in the figure. This accounts for the visual distortion we experience when looking at objects from different points
of view — perspectives, if you will (see? it all comes together somehow!).

The take away from this is that, in projective space, we can ignore certain geometric features (i.e. distances and
angles) while maintaining others (i.e. which two points are connected by a line segment). Some fundamental
principles of projective geometry are as follows:

1. If A and B are distinct points on a plane, there is at least one line containing both A and B.

2. If A and B are distinct points on a plane, there is not more than one line containing both A and B.

3. Any two lines in a plane have at least one point of the plane (which, in the case of “parallel” lines, may be
the point at infinity) in common.

4. There is at least one line on a plane.

5. Every line contains at least three points of the plane.

6. All the points of the plane do not belong to the same line.

7

For your project, you need to be familiar with the Fano Plane. Check here for a nice article discussing this plane
— the smallest instance of projective space.

If you need some extra help (or are just deeply interested in the topic), I recommend njwildberger’s YouTube
videos explaining projective geometry. He goes way more in depth than you’ll need to know, but he’s the best at
explaining it that I’ve found on YouTube so far.

6 Module 3

In this module, we’re going to discuss list comprehensions, revisit the aforementioned dictionaries (as well as
the slightly modified default dictionary), randomness, enumerate, zip and touch upon markov chains (these are
incredibly cool, powerful tools that you likely won’t encounter in detail until later.)

6.1 List Comprehensions

It may be easiest to think about list comprehensions like syntactically modified for loops. In general, the structure
of list comprehensions in Python appear like so:

[operation | for item in list | if conditional]

I have the different pieces of a traditional for loop separated here by a “|”. Note that the “|” would not be used in
practice — it is only to help you visualize where the different pieces of the loop go. The above list comprehension
is equivalent to:

for item in list:
if conditional == True:

operation

You can think of this conditional statement as a sort of filter on the input data, the same way the conditional
statement in the traditional for loop acts on the input data structure.

6.2 Randomness

Randomness has its own subdivision of research and extensive testing to determine whether or not a generator is
truly random, but for the purposes of this course we shall refer to the “pseudo-random” numbers generated by the
python random library simply as “random”.

As you probably already learned in your video lectures, the idea of randomness is rooted in probability, which is a
mathematical way of expressing the likelihood of an event. We can refer to all the possible events that may occur
in a given scenario as that scenario’s event space. The sum of the probabilities of the events occurring across the
event space should be 1, since one of the “events” should occur. As would logically follow, P(0) — a probability
of an event taking place being valued at 0 — would indicate no chance of an event occurring, while P(1) would
indicate an event is definitely going to occur, no way around it. Typically, event probabilities are scaled between
these two values.

In COMP 140, you will be using the following random library functions. From the Python documentation, their
purposes are as follows:

1. To return a random floating point number in the range [0.0, 1.0), all with equal probability, use:

random.random(a)

2. To return a randomly selected integer with equal probability either from 0 to a stopping number, or from a
specified range, use:

random.randrange(a,b)

8

https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spaces-the-fano-plane/
https://www.youtube.com/user/njwildberger/videos
https://www.youtube.com/user/njwildberger/videos
https://www.accelebrate.com/blog/using-defaultdict-python/

where a represents a starting number of the range, and b represents the number up to (but not including) the
range covers. If only one number is given as input, it is inherently assumed to be b, and a shall be assumed
to be 0.

3. To return a random element from a non-empty sequence with equal probability, use:

random.choice(sequence)

6.3 Dictionaries

Although we’ve already touched on dictionaries, they are worth discussing in a bit more detail. The idea of keys
and values were briefly mentioned above in section 2, and are integral to your understanding of a dictionary.
Dictionaries map keys to values, and not the other way around. In this course, you should limit the keys of your
dictionaries to numbers and strings, while the values can be any Python data structure. Therefore, if we refer back
to the college dictionary we defined in section 2.2, the college names would be the keys, and the comments would
be the values. As shown earlier, you can index the dictionary by calling:

sampleDict[‘‘Rice’’]

to return the corresponding value. However, if you were to attempt to index a dictionary by, say, a value (or any
other string/variable/object not represented as a key in said dictionary):

sampleDict[‘‘unconventional’’]

you would encounter an error. That is, you would encounter an error unless you were using a default dictionary.
Default dictionaries allow you to do exactly what they sound like — set a default value for any key not already
explicitly represented in the dictionary. To implement a default dictionary, you must first consider the functionality
of the dictionary in order to determine what you set the default value to be. Say you want to count the occurrence
of something — you would implement a default dictionary in the following manner:

countDict = defaultdict(int)

Thus, when countDict is indexed by some object that is not already present in the keys, the corresponding value
has already been initialized to 0. This allows us to directly manipulated the mapping without having to explicitly
set values for new keys we are adding, although that functionality is also preserved from the standard Python
dictionary data structure. If we wanted to use a default dictionary to represent the function collegeComments, we
would need to use a lambda — so let’s hold off on setting specific default values (rather than just types).

To iterate over either all the keys or values in a dictionary, you may call (respectively):

for key in sampleDict.keys():
print key

for value in sampleDict.values():
print value

If you were to call just:

sampleDict.keys()

you would receive a sequence of the keys in sampleDict in no particular order — remember, dictionaries are an
unordered data structure.

6.4 Markov Chains

Markov models are especially cool methods of investigating hidden patterns/processes. I encourage you to check
them out in your free time, like this eLife paper authored by a friend of mine. However, for the purposes of this
course we shall refrain from going to deep into detail of Markov models, restricting ourselves to Markov chains
with and without memory. It may be easiest to understand if we begin discussing a simple markov chain ourselves.

9

https://cdn.elifesciences.org/articles/34467/elife-34467-v1.pdf

Imagine the chain above represents the weather forecast for Chicago, since it rarely snows in Houston, and I can
confirm Chicago weather adheres to a similar pattern. This chain exhibits the Markov property since the future
states rely only on the current state the city is in. Say it is sunny in Chicago. Regardless of whether it was raining
or snowing yesterday, the probability of whether it will rain or snow tomorrow remains unchanged. If say, the
probabilities were different based on how we got to be in the nice state — if it had a better chance of being nice
again tomorrow if it rained yesterday than if it had snowed — then the chain does not exhibit the Markov property.

Maybe you’re looking at this chain and are struggling to read it. Assuming the weather in Chicago is sunny, there
is a 75% chance that it will be sunny again tomorrow. Otherwise, the chance of rain is 15%, and the chance of
snow is 10%.

10

	Introduction
	Python as a Tool
	Ordered Data Structures in Python
	Unordered Data Structures in Python
	For Loops
	While Loops

	Some Advice On Recipes
	Approaching The Projects
	Module 2
	Modular Arithmetic
	Projective Geometry

	Module 3
	List Comprehensions
	Randomness
	Dictionaries
	Markov Chains

